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ABSTRACT

Background. Treatment-resistance genes limiting anti-

cancer therapy have not been well clarified in colorectal

cancer (CRC). We explored gene expression profiles to

identify biomarkers for predicting treatment resistance to

an anticancer drug in CRC.

Methods. Six CRC cell lines were treated with phenyl-

butyrate (PB). The gene expression profiles were then

compared using microarrays (harboring 54,675 genes), and

genes associated with PB resistance were identified. Can-

didate genes were functionally examined in cell lines and

clinically validated for treatment resistance in clinical

samples.

Results. Both DLD1 and HCT15 cells were PB resistant,

while HCT116 cells were identified as PB sensitive. On

microarray analysis, among the PB resistance-related

genes, the expression of the genes ASCL2, LEF1, and

TSPAN8 was clearly associated with PB resistance. PB-

sensitive cells transfected with one of these three genes

exhibited significant (P\ 0.001) augmentation of PB

resistance; ASCL2 induced expression of both LEF1 and

TSPAN8, while neither LEF1 nor TSPAN8 induced ASCL2.

RNA interference via ASCL2 knockdown made PB-resis-

tant cells sensitive to PB and inhibited both genes. ASCL2

knockdown also played a critical role in sensitivity to

treatment by 5-fluorouracil and radiotherapy in addition to

PB. Finally, ASCL2 expression was significantly correlated

with histological grade of rectal cancer with preoperative

chemoradiation therapy.

Conclusions. ASCL2 was identified as a causative gene

involved in therapeutic resistance against anticancer treat-

ments in CRC.

Colorectal cancer (CRC) has been treated with

chemo(radio)therapy1 and molecular target therapy.2,3

However, some cases exhibit treatment failure and/or

severe adverse effects associated with anticancer therapy.

Hence, the mechanisms involved in drug resistance must be

clarified to develop new therapeutic strategies and

biomarkers for primary CRC.

We hypothesized that the resistance mechanism of

anticancer treatments may be independent of the modalities

or kinds of drugs applied. To identify genes uniquely

involved in anticancer treatments in CRC, one must use

individual anticancer drugs such as 5-FU, oxaliplatin, and

radiation, respectively, because of their daily use in
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concurrent multimodality treatments for CRC such as

neoadjuvant chemoradiation therapy (radiation and 5-FU)4

or FOLFOX (5-FU and oxaliplatin).5

We recently constructed a model using phenylbutyrate

(PB) to identify genes involved in PB resistance in breast

cancer, and identified the ZEB1 gene,6 which has been

confirmed to be related to resistance to chemoradiation

therapy (multiplex chemotherapy drug and radiation) in

breast cancer.7,8 So, in the current study, we applied the

same model to identify genes involved in drug resistance in

CRC.

MATERIALS AND METHODS

Cell Lines

We used six CRC cell lines (DLD1, HCT15, COLO320,

LOVO, COLO205, and HCT116) as described previously.9

The cell lines excluding LOVO and HCT116 cells were

maintained in Roswell Park Memorial Institute (RPMI)

1640 medium (GIBCO, Carlsbad, CA). The LOVO cells

were maintained in 50:50 RPMI 1640:F-12 Ham’s medium

(Sigma-Aldrich N6658, St Louis, MO, USA), and the

HCT116 cells were maintained in Dulbecco’s modified

Eagle’s medium (DMEM, Sigma-Aldrich D6429). All

media contained 10% fetal bovine serum.

PB Treatments in CRC Cell Lines

One tablet of PB (1 g, triButyrate�; Fyrklövern Scan-

dinavia AB, Sweden) was used as previously described.6

Serum PB concentrations reached 0.5–3 mM in humans

when administered at dosages of 27 or 36 g/day.10 Hence,

we added 1-, 2-, 4-, 10-, and 20-fold dosages of PB solution

(onefold dosage = 0.5 mM, 0.5–10 mM) as previously

described.6

Expression Microarrays

Messenger RNA (mRNA) was extracted from the PB-

sensitive strain (HCT116) and the PB-resistant strains

(DLD1 and HCT15) using an RNeasy Mini Kit (QIAGEN

Sciences, MD, USA). The gene profiles were analyzed

using Affymetrix 30 IVT Express Kit microarrays (har-

boring 54,675 genes) according to the manufacturer’s

instructions.

Semiquantitative RT-PCR

Total RNA from cell lines was reverse-transcribed using

a SuperScript III reverse transcriptase kit (Invitrogen) as

described previously.9 The thermal cycling conditions were

as follows: an initial hold at 95 �C for 3 min and 30 cycles

of 1 min at 95 �C, 1 min at 56 �C, 1 min at 72 �C, and

10 min at 72 �C. PCR primer sequences are presented in

Supplementary Table S1.

5-Aza-dC and TSA Treatments in CRC Cell Lines

Cells from the PB-resistant strains (1 9 106 cells/T-75

flask) were treated with 1 or 5 lM of the demethylation

agent 5-aza-dC (Sigma-Aldrich) dissolved in 50% acetic

acid (Wako Pure Chemical Industries, Osaka, Japan) once

every 24 h for 4 days followed by 300 nM of the HDAC

inhibitor TSA (Sigma-Aldrich) for the final 24 h, as

described previously.6 On day 5, the cells were detached

using Trypsin-ethylenediaminetetraacetic acid (EDTA),

and mRNA was extracted using the RNeasy Mini Kit

(QIAGEN).

Plasmid and Transfection

The full-length cDNA sequences of the TSPAN8 and

LEF1 genes were isolated using PCR and subcloned into a

pcDNATM3.1D/V5-His-TOPO vector (Invitrogen). A vec-

tor with self-ligation was used as control. The ASCL2

plasmid was purchased from OriGene Technologies

(Rockville, MD, USA).

The cells were transfected with 4 lg plasmid vector

using Lipofectamine 2000 reagent (Invitrogen) in OPTI-

MEM medium (GIBCO) according to the manufacturer’s

instructions. At 3 days after transfection, the viable cells

were counted and used for RT-PCR.

siRNA and Transfection

siRNA targeting human ASCL2 was prepared using the

method described by Jubb et al.11 A scramble siRNA was

prepared according to the manufacturer’s instructions as

control: sense, 50-agggucagacggauagcaa-30; antisense, 50-
uugcuauccgucugacccu-30 (Sigma-Aldrich).

The cells were seeded in six wells overnight to reach

30–40% confluence, then transfected with 100 pmol

siRNA using Lipofectamine 2000 reagent in OPTI-MEM

medium according to the manufacturer’s instructions. After

24 h, the cells were treated with a single administration of

tenfold PB solution, 1 lg/mL of 5-FU (Wako), 4 lg/mL of

L-OHP (Sigma-Aldrich), or 3 Gy/day of radiation for

2 days. At 3 days after transfection, the cells were counted

and used for RT-PCR.
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ASCL2 Genomic Gain Status in Primary CRC

and Liver Metastasis

The genomic gain status of ASCL2 gene was investi-

gated in a total of 33 primary CRC patients with liver

metastasis who underwent surgical resection for their pri-

mary tumors and liver metastases at Kitasato University

Hospital in 2000 as previously described for PRL3 genomic

amplification12 (Supplementary Table S2). This study was

conducted in accordance with the Declaration of Helsinki

and was approved by the Research Ethics Committee of

Kitasato University School of Medicine (number B17-

355). All patients agreed to use of their pathological

specimens for research purposes. Q-PCR with a TaqMan

probe was performed in triplicate samples using iQTM

Supermix (Bio-Rad Laboratories, Hercules, CA) and the

iCycler iQTM Real-Time PCR Detection system (Bio-Rad).

To normalize each gene copy number per cell, b-actin was

used as endogenous reference, as described previously.13

The copy number of the tumor tissues relative to corre-

sponding normal tissues was determined as 2-DDCt, where

DDCt = DCt(tumor) - DCt(corresponding normal). The

ASCL2 primer and probe were prepared using Primer 3

software (Supplementary Table S1). A DNA ratio in the

tumor (primary CRC or liver metastasis) tissues (T) rela-

tive to the corresponding normal tissues (N) (T/N ratio) that

was equal to or greater than twofold was defined as positive

genomic gain.

Immunohistochemistry

Immunohistochemical staining for ASCL2 was investi-

gated initially for tumor tissues (primary CRC and liver

metastasis of CRC) and noncancerous mucosa tissues from

two CRC patients with positive ASCL2 genomic gain, then

for before neoadjuvant chemoradiation therapy (NCRT)

biopsy samples from 57 primary rectal cancer patients who

underwent NCRT followed by surgical resection at Kita-

sato University Hospital between 2004 and 2014

(Supplementary Table S3). This study was conducted in

accordance with the Declaration of Helsinki and was

approved by the Research Ethics Committee of Kitasato

University School of Medicine (number B17-355).

Tissues from the patients with CRC were immunohis-

tochemically stained for ASCL2 using Anti-Achaete Scute

homolog 2, clone 8F1 (mouse monoclonal IgG1 k; Merck

Millipore Corp., Darmstadt, Germany) at antibody con-

centration of 10 lg/mL. This antibody has been

demonstrated to provide strong contrast between positive

and negative controls.14

Statistical Analysis

Continuous variables were evaluated using the Student

t test, and categorical variables were evaluated using the

Fisher exact test or the Chi square test, as appropriate.

P\ 0.05 was considered to indicate statistical significance.

All calculations were performed using JMP� 11 software

(SAS Institute Inc., Cary, NC, USA).

RESULTS

Classification of PB Resistance in CRC Cell Lines

Cell proliferation was assessed at various concentra-

tions, ranging from 0.5 to 10 mM, of PB in the six CRC

cell lines. Viable cells were counted on day 7 and com-

pared with the control cells (Fig. 1a). The numbers of

HCT116, COLO205, COLO320, and LOVO cells were

lower after treatment with 0.5 mM PB than those of cor-

responding control cells (reduction rates of 45%, 35%,

26%, and 26%, respectively). The numbers of DLD1 and

HCT15 cells, however, were similar after treatment with

0.5 mM or 1 mM PB, while they were reduced in number

by more than 80% after treatment with 5 mM or

10 mM PB. In 0.5 mM PB treatments, both DLD1 and

HCT15 cells (PB-resistant CRC cells) did not show

reduced numbers, while HCT116 cells (PB-sensitive CRC

cells) showed significantly (P = 0.005) reduced numbers

(Fig. 1b). The increase of DLD1 cells in the 0.5 mM

treatment was not statistically significant, but epigenetic

treatments increase both oncogenic and tumor suppressor

genes,15 thus specific conditions of PB may affect onco-

genic genes more than tumor suppressor genes. Based on

the results of these experiments, it was considered that

differential PB sensitivity was seen in the six CRC cell

lines, whereas cell proliferation could always be sup-

pressed by high concentration of PB in all six cell lines,

consistent with results in breast cancer.6 Hence, the

HCT116 cells were designated as a PB-sensitive strain,

while both the DLD1 and HCT15 cells were designated as

PB-resistant strains throughout the remainder of the study.

Identification of Genes Whose Expression Is

Significantly Associated with PB Sensitivity and PB

Resistance Using Expression Microarrays

To clarify the differential gene expression profiles that

significantly differed between PB sensitivity and PB resi-

dence, Affymetrix expression microarrays harboring

54,675 genes were used. ‘‘High’’ expression in CRC cell

lines by microarrays was initially defined as a raw signal

value of 100 or beyond, because RT-PCR can steadily

amplify such expression levels, as previously experienced.6

ASCL2 Pathway Causes Treatment-Resistance in CRC



Genes with the top 40 highest expression ratios between

sensitive and resistant strain were categorized as PB sen-

sitivity related, and those with the top 26 highest

expression ratios between resistant and sensitive strain as

PB resistance related. Heat maps of such genes according

to their expression ratio between PB-resistant strains

(DLD1 and HCT15) and PB-sensitive strain (HCT116) are

shown in Fig. 2a. Semiquantitative RT-PCR confirmed that

the microarray results were almost accurate (representative

genes are shown in Fig. 2b). The top 40 genes that were

highly expressed in the PB-sensitive strains included BCL2

interacting protein 3 (BNIP3), cysteine-rich intestinal

protein 1 (CRIP1), and retinol binding protein 1 (RBP1),

which have been previously reported as being associated

with tumor suppressor activity.15,16 On the other hand, the

26 genes that were highly expressed in the PB-resistant

strains included achaete-scute like 2 (ASCL2), lymphoid

enhancer-binding factor 1 (LEF1), and Tetraspanin8

(TSPAN8), which are known to be involved in Wnt path-

way activation.11,17

Demethylation Treatment Results in Differential

Expression in Either PB Sensitivity- or Resistance-

Related Genes

Simultaneous treatment with 5-aza-20-deoxycytidine (5-

aza-dC) and trichostatin A (TSA), a highly effective

demethylation method, was used to evaluate whether epi-

genetic factors affect the differential expression of the

genes identified above.15 Almost all the PB sensitivity-re-

lated genes were reactivated after demethylation treatment,

while the gene expressions of almost all the PB resistance-

related genes showed no change after the same treatment

(Fig. 2c). These findings suggest that the expression of the

PB-resistant genes is regulated in a manner different from

those of the PB-sensitive genes, and the molecular mech-

anism of PB resistance is likely to be mediated genetically,

0

50

100

150

mock PB

<DLD1>(%)

(0.5 mM)

Pe
rc

en
ta

ge
 o

f t
he

 n
um

be
r o

f l
iv

in
g 

ce
lls

(a)

(b)

(%)

0

50

100

150

mock PB

<HCT116>

(0.5 mM)
mock PB

(0.5 mM)

Pe
rc

en
ta

ge
 o

f t
he

 n
um

be
r o

f l
iv

in
g 

ce
lls

(%)

0

50

100

150

Pe
rc

en
ta

ge
 o

f t
he

 n
um

be
r o

f l
iv

in
g 

ce
lls

p = 0.005

0

20

40

60

80

100

120

140

0 0.5 1 2 5 10

DLD1

HCT15

COLO320

LOVO

COLO205

HCT116

Concentration of PB (mM)

Pe
rc

en
ta

ge
 o

f t
he

 n
um

be
r o

f l
iv

in
g 

ce
lls

(%) IC50
DLD1 3.7
HCT15 2.3
COLO320 1.6
LOVO 1.4
COLO205 0.9
HCT116 0.6

(mM)

<HCT15>

FIG. 1 Classification of PB sensitivity in CRC cell lines.

a Percentage of number of living cells in CRC cell lines according

to concentration of PB treatment. The number of HCT116 cells was

reduced by a onefold PB dose, while the numbers of DLD1 and

HCT15 cells were barely reduced by either a onefold or even twofold

PB dosage. b Reduction rate of viable cells in three cell lines. The

number of HCT116 cells was significantly reduced by onefold PB

treatment. Error bars indicate respective standard deviation

T. Tanaka et al.



which is different from the epigenetic regulation of ZEB1

in breast cancer.6 Actually, ZEB1, which is associated with

PB resistance in breast cancer, was silenced in all three

CRC cell lines, and no association between ZEB1 expres-

sion and PB resistance was observed in CRC. Considering

these unexpected results, we conclude that PB resistance-

related genes are regulated by genetic aberrations unique to

CRC. Importantly, CRC is well known to be generated

from adenomatous polyposis coli (APC)/b-catenin Wnt

genetic pathway activation differently from breast can-

cer,18 and ASCL2, LEF1, and TSPAN8 genes are well

known to be involved in Wnt pathway activation, as

described above.

Transfection of ASCL2, LEF1, and TSPAN8 Genes

into PB-Sensitive CRC Cells

We next made expression plasmids of ASCL2, LEF1,

and TSPAN8 genes from CRC cell lines. Transient trans-

fection of a plasmid vector with the full-length ASCL2 gene

into HCT116 cells (PB-sensitive cells) induced mRNA

expression of both LEF1 and TSPAN8 genes (Fig. 3a). This

transient transfection of an ASCL2-expressing vector sig-

nificantly (t test, P\ 0.001) augmented PB resistance to

the same level as observed in PB-resistant cells (DLD1

mock cells) after 5 mM PB treatment.

On the other hand, transient transfection of a plasmid

vector with the full-length LEF1 or TSPAN8 gene into

HCT116 cells (PB-sensitive cells) did not induce expres-

sion of the two other genes (Fig. 3b, c). The transient

transfection of either an LEF1- or TSPAN8-expressing

vector significantly (t test, P\ 0.001 for both vectors)
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augmented PB resistance to a level similar to that observed

in DLD1 mock cells after 5 mM PB treatment.

These findings suggest that ASCL2 is an upstream acti-

vator of either LEF1 or TSPAN8, and we proceeded to

perform detailed experiments focusing on ASCL2 among

the three PB-resistance-related genes.

ASCL2 Gene Knockdown by Transfection of Small

Interfering RNA (siRNA) into PB-Resistant CRC Cells

We then performed knockdown of ASCL2 gene in the

PB-resistant cell lines (DLD1 and HCT15 cells). Transient

transfection of ASCL2 siRNA into HCT15 cells reduced the

expression of LEF1 and TSPAN8 genes as expected

(Fig. 4a). Under PB treatment, the transient transfection of

ASCL2 siRNA significantly (t test, P = 0.002) increased

PB sensitivity in HCT15 cells. On the other hand, the

transient transfection of ASCL2 siRNA into DLD1 cells

also reduced the expression of TSPAN8 gene, whereas

LEF1 gene was little changed (Fig. 4b). Under PB treat-

ment, the transient transfection of ASCL2 siRNA

remarkably (t test, P = 0.006) increased PB sensitivity in

DLD1 cells.

As PB is not a drug used in daily clinical practice to treat

CRC, we further investigated the associations between the

gene expression of ASCL2 and anticancer treatments other

than PB treatment, viz. 5-fluorouracil (5-FU), oxaliplatin

(L-OHP), and radiation. Under 5-FU treatment, transient

transfection of ASCL2 siRNA into HCT15 and DLD1

significantly (t test, P\ 0.0001 and P = 0.008, respec-

tively) increased 5-FU sensitivity. Under L-OHP treatment,

on the other hand, transient transfection of ASCL2 siRNA

into HCT15 and DLD1 did not cause any changes in

L-OHP sensitivity. Under radiation treatment, transient

transfection of ASCL2 siRNA into HCT15 and DLD1

significantly (t test, P\ 0.0001 and P = 0.0002,
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respectively) increased radiation sensitivity. 5-FU and

radiation treatments are main components of NCRT in

advanced rectal cancer treatment at present,4 raising

interest in the clinical association between ASCL2 expres-

sion and NCRT response in rectal cancer.

Genomic Amplification of ASCL2 and Immunostaining

of ASCL2 in CRC Clinical Materials

The above results suggest that genomic changes in

ASCL2 may be involved in the sensitivity of cells to a

variety of anticancer treatments for CRC. Gene copy

number gain of ASCL2 gene has been reported in liver

metastasis of CRC.19 We thus investigated the genomic

gain status of ASCL2 gene in primary CRC tumor tissues

and corresponding liver metastases with respect to corre-

sponding noncancerous mucosa tissues.

Quantitative PCR (Q-PCR) for ASCL2 DNA was ini-

tially performed to assess the gene copy number. The T

(CRC tumor or liver metastasis tissue)/N (noncancerous

mucosa tissue) ratios of the ASCL2 DNA are shown in

Fig. 5a. All 33 cases had both primary CRC and liver

metastasis. An ASCL2 genomic gain (defined as T/N ratio

of 2 or above) was seen in three cases, composed of one

liver metastasis (case 1) and two primary CRC (cases 2 and

5), which is much less than in a previous report.19 In case 1,

ASCL2 genomic gain was only found in liver metastasis but

not in primary CRC tumor. In cases 2 and 5, ASCL2

genomic gain was seen only in primary CRC tumors. A

representative genomic quantification (case 5) is shown in

Fig. 5b. A positive correlation of ASCL2 genomic gain was

seen between the primary CRCs and corresponding liver

metastases (Fig. 5c, P = 0.02). The expression of ASCL2

protein was finally investigated in two cases with genomic

gain (cases 1 and 2) in immunohistochemistry (Fig. 5d).

ASCL2-positive cells were observed in the intestinal crypts

of normal colon mucosa as previously described,11 while
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FIG. 4 Knockdown experiments in PB-resistant CRC cells.

Transfection of ASCL2 siRNA into HCT15 (a) and DLD1 (b).

Suppression of ASCL2 gene expression reduced expression of LEF1

and TSPAN8 and significantly increased the sensitivities of both

HCT15 and DLD1 cells to PB, 5-FU, and radiation treatment
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higher numbers of ASCL2-positive cells were seen in the

corresponding primary CRC and liver metastasis.

Prediction of Histological Grade

by Immunohistochemistry of ASCL2 in Rectal Cancer

Biopsy Samples

Finally, preoperative biopsy samples from 57 rectal

cancer patients who underwent NCRT were immunos-

tained for ASCL2. The 57 rectal cancers showed

histological grade 1 (n = 23), 2 (n = 21), and 3 (n = 13)

after NCRT, and the complete remission (CR) rate was

13/57 (22.8%), consistent with our previous report.20

Immunohistochemistry of ASCL2 was classified into IHC0

(n = 7), IHC1? (n = 19), and IHC2? n = 31) (Fig. 6a).

Interestingly, ASCL2 immunostaining was significantly

(P = 0.006) correlated with pathological histology grade

(Fig. 6b). Among rectal cancer patients with NCRT

showing histological grade 1, 78% were immunostained for

ASCL2 IHC2?, compared with only 15% for those with

histological grade 3 (complete remission).

DISCUSSION

We recently identified ZEB1-RAB25/ESRP1 as PB-re-

sistance genes in breast cancer,6 and ZEB1 has received

wide attention with regard to chemoresistance in breast

cancer.7,8 Utilizing the same search strategy, we again used

the same model for molecules involved in PB chemore-

sistance in this work for CRC. Interestingly, ZEB1

expression was robustly suppressed by epigenetic

(demethylating) treatments,6 and miRNA, e.g., the Mir200

family, which is epigenetically regulated in human cancer,

might play a causative role in ZEB1 overexpression in

human cancers.21 In our CRC cell lines, on the other hand,

ZEB1 was not expressed in either PB-sensitive or PB-
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resistant cells (data not shown). This finding suggests that

ZEB1 is not associated with PB resistance in CRC, unlike

the situation in breast cancer.

In the current search, on the other hand, we discovered

that ASCL2 plays a critical role in PB resistance in CRC.

ASCL2 was significantly associated with resistance against

various anticancer treatments, including PB, 5-FU, and

radiation, but not L-OHP. ASCL2 was not altered by epi-

genetic treatments, unlike the situation of ZEB1 gene in

breast cancer,6 but we focused on ASCL2 gene because it is

critically involved in the Wnt pathway, together with LEF1

and TSPAN8, which have well-known genetic aberrations

in CRC. In a previous report, LEF1 gene was shown to act

upstream of ASCL2,11 while the results for TSPAN8 were

not informative with regard to its relation to ASCL2.

However, the results of this study reveal, for the first time,

that both LEF1 and TSPAN8 are regulated by ASCL2.

ASCL2 and LEF1 are involved in the Wnt pathway, sug-

gesting that genomic alterations play causative roles in the

Wnt activation phenotype linked to chemoresistance in

CRC, unlike the situation in breast cancer.

Dominant negative LEF1 was reported to inhibit ASCL2

expression, suggesting that LEF1 acts upstream of

ASCL2.11 However, in this study, this finding could not be

confirmed. ASCL2 induced expression of both LEF1 and

TSPAN8 genes, whereas ASCL2 gene inhibition suppressed

either or both genes. These findings suggest that ASCL2 is

an upstream regulator of the critical Wnt pathway genes

LEF1 and TSPAN8. Experiments based on transfection of

both LEF1 and TSPAN8 genes indicated that both genes

augmented PB resistance, while neither LEF1 nor TSPAN8

could induce vice versa. Thus, we speculated that LEF1

and TSPAN8 genes were also involved in chemoresistance,

and those actions are dependent on ASCL2 overexpression

in CRC.

LEF1 is a well-established molecule that converges with

the Wnt pathway, with downstream genes of LEF1

reportedly including cyclin D1, c-myc, and Bcl-xl.22 These

genes could be individually involved in chemoresis-

tance.23,24 On the other hand, to the best of the authors’

knowledge, TSPAN8 involvement in chemoresistance has

not been reported, while CD44 involved in the cancer-

initiating process induces TSPAN8, which plays a critical

role in cancer invasion.25 Although TSPAN8 was induced

by ASCL2 transfection in this study, the molecular mech-

anism has not yet been elucidated. Drug resistance capacity

of cancer cells is often accompanied by augmented onco-

genic capacity, because the molecular mechanisms that

explain these two different phenotypes are redundant.26

Although there are no reports describing the molecular

mechanism of TSPAN8 in anticancer drug resistance in

human cancer, it has been reported that TSPAN8 is actually
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correlated with drug resistance in various human can-

cers,17,27 and TSPAN8 may be involved in cancer

stemness28–30 which has been considered to be involved in

drug resistance in cancer cells. Based on these reports, the

precise molecular mechanism is likely to be at least par-

tially explained by cancer-derived exosomes including

TSPAN8 to yield cancer-initiating cells.

The ASCL2 gene, which is for a basic helix–loop–helix

transcription factor, has been reported to be a major tran-

scription factor active in intestinal stem cells that can

trigger formation of liver metastases if overexpressed.14,31

In a previous study, ASCL2, which is located on chromo-

some 11p15.5, was reported to be amplified by 25% in liver

metastases of CRC.19 In this study, however, ASCL2

genomic amplification was less than expected (Fig. 5a).

The Cancer Genome Network has also focused specifically

on ASCL2 genomic amplification, which was also less than

expected relative to the previous report,19 and that ASCL2

overexpression was unlikely to be associated with the

frequent genomic gain of the 11p15 locus in CRC.32

Among the genes at this locus, gene overexpression

accompanied by genomic gain was recognized for IGF2,

and IGF2 overexpression was exclusive for expression of

related genes, such as IRS2. These findings suggest that

ASCL2 is not dominantly responsible for the genomic gain

of 11p15.

ASCL2 has been proposed to be a marker of dynamic

cancer-initiating cells, and it was ubiquitously expressed in

Lgr5-positive colon stem cells, but not in ?4 stem cells,

which are alternative stem cells which are positive for

homeodomain-only protein homeobox (HOPX). 14,33

Immunohistochemistry studies clearly showed the local-

ization of ASCL2 in the crypts of normal colon tissue as

previously shown (Fig. 5d). Simultaneously, ASCL2 is

overexpressed in primary CRC tumors and liver metastasis,

suggesting that such cancer cells were derived from pro-

genitor dynamic stem cells overexpressing ASCL2.

Inhibition of ASCL2 results in arrest at the G2/M

checkpoint of the cell cycle.11,14 Several recent reports

describe that sensitivity to several anticancer drugs such as

CPT11 or Cdk inhibitors is accompanied by G2/M cell

cycle arrest.34,35 In this study, ASCL2 was for the first time

confirmed to be involved in 5-FU or radiotherapy resis-

tance, in addition to PB resistance, while L-OHP sensitivity

was not affected by the expression level of ASCL2. A direct

effect of L-OBP is cross-linking of double-stranded DNA,

and DNA replication is inhibited, resulting in arrest at the

G1/S rather than G2/M phase of the cell cycle.36 Such a

differential acting mechanism may be reflected in the types

of anticancer drug resistance observed in this study.

The results of this study also demonstrate that ASCL2

could be useful as a chemoresistance biomarker for actual

anticancer treatments targeting the cell cycle or damaging

DNA, such as PB, 5-FU, and radiation, even when using

biopsy samples prior to NCRT for locally advanced rectal

cancer. Recently, it was reported that ASCL2 expression

was mainly regulated by long noncoding RNA of

WiNTRLINC1 in CRC, which is a direct target of Wnt

pathways.37 These findings, together with our data (show-

ing that ASCL2 genomic amplification is an infrequent

event), suggest that the WiNTRLINC1/ASCL2 axis could

contain key targets to control the Wnt pathway and CRC

disease.

CONCLUSIONS

A comprehensive search for PB-resistance genes iden-

tified ASCL2, which was genetically regulated possibly

through upstream Wnt pathway activation in CRC. The

ASCL2 gene was also involved in resistance to PB treat-

ment as well as NCRT. The regulation of ASCL2 may

provide a clue for the molecular understanding of CRC

treatment failure.
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